

WBPSC, WBPSC SAE/AE, KMDA, Nirman Sahayak, SSC JE and State JE/AE

NIRMAN SAHAYAK SPECIAL

GAUARENTEED Score Booster Batch

SET-1 LECTURE-1

CHINMOY GHOSH

DAILY MCQs SERIES!

Like || Comment || Share || Subscribe

Q.1 For crossing and points, the maximum size of ballast is

R

1

- A. 50 mm
- B. 20 mm
- **C.** 25 mm
- D. 35 mm

Answer: C

Solution:

- □ Max. size of Ballast: 19-51 mm or 20-50 mm
- For metal sleepers with rounded edges: 40 mm
- For point & crossing: 25 mm
- For flat bottom sleepers: 50 mm
- □ For wooden sleepers: 50 mm

PDFs Download From @

E

SUBSCRIBE

Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.2 The test most suitable for concrete of very low workability is

- A. Slump test
- B. Kelly ball test
- **C.** Compaction factor test
- D. Vee-Bee test

PDFs Download From @

1

Answer: D

Solution:

PDFs_Download From @

Workability test methods applicability in order of very low to high workability:

Vee-Bee consistometer method (>50mm slump) < Compacting Factor Test < Slump test < Flow Test</p>

-

- > Measure workability of concrete in terms of vee-bee seconds.
- This test can measure the workability of concrete with a low slump value up to the 50 mm.

SUBSCRIBE

Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.3 An accurate estimate is prepared in detail item wise by

1

- A. Detailed Estimate
- **B.** Cube Rate Estimate
- C. Plinth Area Estimate
- **D.** Preliminary Estimate

PDFs Download From @

EUCATION SUPERIor

Remarks

Answer: A

Solution:

Detailed Estimate or Item Rate Estimate:

Detailed estimate is prepared for technical sanction.

It is the accurate estimate prepared by working out quantities of each items of work.

Most Accurate or Reliable method.

Detailed specification & Drawing is used for estimate.

Prepared in 2 stages:

PDFs_Download From @

1. Details of measurement & calculation of quantity- 'M Book or Bible of JE'

 Measurement Book (M Book):
 Length- Breadth – Height
 SL. No
 Item Description
 Number
 L
 B
 H
 Quantity

 2. Abstract of estimated cost- 'Abstract Sheet'
 SL. No
 Item Description
 Quantity
 Unit
 Rate
 Amount

-

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.4 Which value is obtained by dismantling the building?

R

- A. Distress Value
- B. Book Value
- C. Scrap Value
- D. Salvage Value

PDFs Download From @

EUCATION SUPER

Like || Comment || Share || Subscribe

Answer: C

Scarp value:

PDFs_Download From @

□ The value of dismantled material of property at the end of its utility.

-

- □ Normally 10% of estimated cost or present value is considered as scrap value.
- The cost of dismantling & removal of rubbish material is deducted from total receipt obtain from sale of useable materials.

SUBSCRIBE

Scrap value may be positive, negative or zero.

Like || Comment || Share || Subscribe

Q.5 Irrigation water conveyed to the land by means of gravity flow indicates which of the following type of irrigation?

- A. Drip Irrigation
- **B.** Flow irrigation
- C. Lift Irrigation

PDFs Download From @

Z

E

D. Sprinkler Irrigation

SUBSCRIBE

These are also called gravity irrigation. It is the type of irrigation in which water is available at a higher level to enable supply to the land by gravity flow.

E

PDFs Download From @

Z

Like || Comment || Share || Subscribe

Q.7 According to Indian Standard, the number of rain gauge stations for an area of 5200 km2 in plains should be

PDFs Download From @

K

1

SUBSCRIBE Like || Comment || Share || Subscribe

Answer: A

Solution:

PDFs Download From @

Rain gauge density (IS 4987-1968):

- 1. Plain area: 1 station per 520 Sq.km
- 2. Region of Avg. elevation 1000 m: 1 station per 260-390 Sq.km
- 3. Predominantly hilly areas with heavy rainfall: 1 station per 130 Sq.km.

E

Like || Comment || Share || Subscribe

Q.7 For non-passing sight distance, the height of stationary object considered is

- A. 10 cm
- B. 50 cm
- C. 15 cm
- D. 75 cm

PDFs Download From @

R

REAL PARTY OF YOUR SYO

Answer: C

Solution:

PDFs Download From @

1

Sight Distance at vertical summit curve

IRC has suggested that the height of the eye level of the driver is 1.2 m and the height of the object as 0.15 m above the road surface.

Ξ

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.8 As per IS:10500-2012, the maximum desirable limits of iron and fluorides for drinking water are

- A. 0.3 and 0.3 mg/l
- B. 0.5 and 1.5 mg/l
- C. 0.3 and 1.0 mg/l
- D. 0.3 and 1.5 mg/l

SUBSCRIBE

K

Answer: C

PDFs Download From @

R

1

					1997 (1916)
SI No.	. Characteristic	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source	Method of Test, Ref to	Remarks
(1)	(2)	(3)	(4)	(5)	(6)
i)	Aluminium (as Al), mg/l, Max	0.03	0.2	IS 3025 (Part 55)	_
ii)	Ammonia (as total ammonia-N), mg/l, Max	0.5	No relaxation	IS 3025 (Part 34)	_
iii)	Anionic detergents (as MBAS) mg/l, Max	0.2	1.0	Annex K of IS 13428	_
iv)	Barium (as Ba), mg/l, Max	0.7	No relaxation	Annex F of IS 13428 or IS 15302	ŧ
v)	Boron (as B), mg/l, Max	0.5	1.0	IS 3025 (Part 57)	
vi)	Calcium (as Ca), mg/l, Max	75	200	IS 3025 (Part 40)	_
vii)	Chloramines (as Cl ₂), mg/l, Max	4.0	No relaxation	IS 3025 (Part 26)* or APHA 4500-Cl G	_
viii)	Chloride (as Cl), mg/l, Max	250	1 000	IS 3025 (Part 32)	_
ix)	Copper (as Cu), mg/l, Max	0.05	1.5	IS 3025 (Part 42)	_
x)	Fluoride (as F) mg/l, Max	1.0	1.5	IS 3025 (Part 60)	
xi)	Free residual chlorine, mg/l, Min	a 0.2	1	IS 3025 (Part 26)	To be applicable only when water is chlorinated. Tested at consumer end. When pro tection against viral infec- tion is required, it should be minimum 0.5 mg/l
xii)	Iron (as Fe), mg/l, Max	0.3	No relaxation	IS 3025 (Part 53)	Total concentration of man- ganese (as Mn) and iron (as Fe) shall not exceed 0.3 mg/
xiii)	Magnesium (as Mg), mg/l, Max	30	100	IS 3025 (Part 46)	_

Table 2 General Parameters Concerning Substances Undesirable in Excessive Amounts (Foreword and Clause 4)

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.9 The alum added as a coagulant in water treatment functions when the raw water is

- A. Acidic with high turbidity
- **B.** Neutral with low turbidity
- **C.** Acidic with low turbidity

PDFs Download From @

D. Alkaline with high turbidity

1

E

Answer: D

PDFs_Download From @

- Alum works best in alkaline conditions, with a pH range of 6.5 to 8.5. At this pH range, aluminum hydroxide precipitates form quickly, which helps to trap and remove impurities such as suspended solids and microorganisms.
- Alum is more effective in water with high turbidity levels because the particles are more likely to collide and form larger flocs that can be easily removed by sedimentation or filtration.

SUBSCRIBE

Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.10 If the intensity of rainfall is more than the infiltration capacity of soil, then the infiltration rate will be

- A. Equal to rate of rainfall
- **B. Equal to infiltration capacity**
- C. More than rate of rainfall

PDFs Download From @

D. More than infiltration capacity

1

Ξ

Answer: B

Solution:

Infiltration Capacity:

- It is the maximum rate at which a given soil at a given time can absorb water and is denoted by f.
- □ If $i \ge f$ then fa = f (depend upon soil capacity)
- □ If i < f then fa = i (depend upon rainfall intensity), where fa = actual infiltration capacity, i = rate of rainfall, f = infiltration capacity.

=

Like || Comment || Share || Subscribe

Q.11 Which of the following would represent the surface of the water level of a still lake?

- A. Level surface
- **B.** Contour surface
- C. Horizontal surface
- **D.** None of these

PDFs Download From @

1

Like || Comment || Share || Subscribe

Answer: A

Solution:

Level surface:

PDFs_Download From @

□ The level surface is the surface that is parallel to the earth's curvature at all points.

-

SUBSCRIBE

It is always perpendicular to the plumb line.
Notes:

For boundary of water of a still lake: Contour line

Surface of water level of a still lake: Level surface

REPORTED IN CONTRACTOR

Like || Comment || Share || Subscribe

Q.12 A well-graded sand should have

2

1

- **A.** Cu ≥ 4
- **B. Cu** > 6
- **C.** Cu ≥ 1
- **D. Cu** > 3

PDFs Download From @

REAL PROPERTY OF THE SUPERIOR

Answer: B

Solution:

Uniformity Coefficient:

PDFs Download From @

 $\succ \mathbf{C}_{u} = \frac{D_{60}}{D_{10}}$

> Represents the particle size range in distribution curve.

1

E

- For uniformly graded soil, Cu = 1
- For well graded sand, Cu > 6
- For well graded gravel, Cu > 4

SUBSCRIBE Like || Comment || Share || Subscribe

PORTERING PORTERINA PORTERINA PORTERINA PORTERINA PORTERINA PORTER

Like || Comment || Share || Subscribe

Q.13 For dense sand, the relative density is

1

- A. Between 35 and 65
- B. Between 65 and 85
- C. Between 85 and 100
- D. > 100

Like || Comment || Share || Subscribe

Answer: B

Solution:

- Relative density is the measure of compactness of cohesionless soil.
- Relative density or density index is the ratio of the difference between the void ratios of a cohesionless soil in its loosest state and existing natural state to the difference between its void ratio in the loosest and densest states.

$$\mathbf{R}_{\mathbf{D}} = \frac{(e_{max} - e_n)}{(e_{max} - e_{min})} \mathbf{x} \ \mathbf{100\%}$$

PDFs_Download From @

Relative Density (%)	Classification
< 15	Very loose
15-35	Loose
35-65	Medium dense
65-85	Dense
> 85	Very dense

Like || Comment || Share || Subscribe

Q.14 The particle size distribution curve with a hump is obtained for a

- A. Uniform soil
- B. Well-graded soil
- C. Gap-graded soil

PDFs Download From @

1

D. Poorly-graded soil

Answer: C

Solution:

PDFs Download From @

1

□ The particle size distribution curve with a hump is obtained for a Gap graded soil.

SUBSCRIBE Like || Comment || Share || Subscribe

PORT SUCCESSION

Like || Comment || Share || Subscribe

Q.15 The collapsible soil is associated with

2

- A. Dune sand
- **B.** Laterite sand
- C. Loess
- D. Black cotton soil

PDFs Download From @

Like || Comment || Share || Subscribe

Answer: C

Solution:

PDFs Download From @

7

- Collapsible soil is those for which there is a decrease in volume on the addition of water. Example: Loess
- Loess is predominantly a silt-sized sediment that is formed by the accumulation of wind-blown dust.

Like || Comment || Share || Subscribe

Q.16 For a soil deposit having n = 33% and G = 2.60, the critical gradient is

1

SUBSCRIBE

2

- A. 1.0
- **B.** 1.05
- **C.** 1.07
- **D.** 1.10

Answer: C

Solution:

- G = 2.6, n = 0.33
- **A.** $e = \frac{n}{1-n} = 0.492$
- B. Critical hydraulic gradient, $i_c = \frac{G-1}{1+e}$ or, (G-1)(1-n) = 1.07

5

□ At the critical conditions, the **effective stress is equal to zero**.

E

SUBSCRIBE

Like || Comment || Share || Subscribe

POP YOUR SUESS

Like || Comment || Share || Subscribe

Q.17 Quick sand is

- A. A type of sand
- B. A condition in which a cohesionless soil loses its strength because of upward flow of water.

E

SUBSCRIBE

- C. A condition in which a cohesive soil loses its strength
- **D.** None of the above

PDFs_Download From @

Answer: B

Solution:

PDFs_Download From @

Like || Comment || Share || Subscribe

Quick Sand Condition/Boiling Condition:

Quicksand condition is not a type of soil but a flow condition that occurs in cohesionless soils.

=

- This process in which soil particles are lifted over the soil mass is called quicksand condition.
- It occurs when the upward seepage pressure in soil becomes equal to submerged unit weight of the soil. This results into effective stress equal to zero.

Like || Comment || Share || Subscribe

Q.18 The hypotenuse allowance (in m) for 30 m long chain, if the slope is 1:10 is

- A. 0.1
- **B.** 0.12
- **C.** 0.15
- **D.** 0.22

PDFs Download From @

R

1
Like || Comment || Share || Subscribe

SUBSCRIBE

Answer: C

Solution:

Slope $= \frac{1}{10} = \frac{h}{L}$ So, $h = \frac{30}{10} = 3 \text{ m}$ Hypotenuse allowance $= \frac{h^2}{2L} = \frac{3^2}{2 \times 30} = 0.15$

R

Like || Comment || Share || Subscribe

Q.19 The line which is used to collect the details of the object in an area is called

- A. Base Line
- **B.** Check Line
- C. Main Line
- D. Tie Line

SUBSCRIBE

Z

Answer: D

Solution:

PDFs_Download From @

Like || Comment || Share || Subscribe

Check line: The lines which are run in the field to check the accuracy of the work are known as Check line. They are also known as Proof lines.

Base line: The **biggest line that will divide the total area into two parts** is known as Base line. It is the biggest line among all the lines in a traverse.

SUBSCRIBE

Tie line: The lines which are used to collect the details of the nearby objects are known as Tie line.

-

Like || Comment || Share || Subscribe

Q.20 The type of surveying in which the curvature of the earth is taken into account is called

- A. Geodetic survey
- **B.** Plane survey
- C. Preliminary survey
- **D.** Topographical survey

1

LECTURE #1

MCQs SERIES

Answer: A

Solution:

Property	Plane Survey	Geodetic Survey
Curvature of earth	Not taken into account (considered as plane)	Taken into account
Area of survey	Smaller (< 195.5 km ² or < 250 m ²)	Larger (> 195.5 km ² or > 250 m ²
Degree of Precision (Accuracy)	Less	More
Plumb line	Parallel to each other (direction of gravity)	Meet at centre of the earth
Angular measurement	Plane triangle (Sum of angle = 180°)	Spherical triangle (Sum of angle = 180 [°] + 1 second for area 195.5 km ²)
	Curvature of the earth not considered (No	Difference between straight & curve
Linear measurement	difference between straight & curve line)	line: 1 cm for 12 km & 1.5 cm for 18
		km.
Used by	Irrigation & railway	Survey department of India

PDFs Download From @

1

1

SUBSCRIBE Like || Comment || Share || Subscribe

1

Like || Comment || Share || Subscribe

Q.21 Which of the following Indian Standard is referred to determine zone of fine aggregate:

- A. IS 456
- B. IS 1893
- **C. IS 800**
- D. IS 383

1

LECTURE #1

EUCATION SUPER

Answer: D

Solution:

PDFs Download From @

1

1

IS Codes	Details
IS: 269-2015	OPC cement (33/43/53 grade)
IS: 383-2016	Coarse and Fine Aggregate for Concrete - Specification
IS: 456-2000	RCC design
IS: 800-2007	Steel design
IS: 1893-2016	Earthquake design
IS: 10262-2019	Mix design of concrete
IS: 2386	Aggregate test
IS: 4031	Cement test

MCQs SERIES

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.22 To prevent segregation, the maximum height of placing of concrete is

- A. 100 cm
- B. 150 cm
- **C.** 125 cm
- D. 200 cm

SUBSCRIBE

R

1

PRE PROVIDENCE

Answer: B

Solution:

□ As per clause 13.2 of IS 456: 2000, the maximum permissible free fall of concrete to avoid segregation may be taken as 1.5 m or 150 cm.

PDFs Download From @

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.23 Approximate value of shrinkage strain in concrete is

1

1

- A. 0.03
- **B.** 0.003
- **C.** 0.0003
- D. 0.00003

PDFs Download From @

Like || Comment || Share || Subscribe

Answer: C

Solution:

As per Clause 6.2. 4.1 of IS 456:2000, The approximate value of the total shrinkage strain for design may be taken as 0.0003.

SUBSCRIBE

Z

Like || Comment || Share || Subscribe

Q.24 _____ are used to finish concrete surfaces such as bridge floors, road slabs

- A. Immersion vibrators
- **B.** Surface vibrators
- **C. Form vibrators**

PDFs Download From @

Z

D. Internal vibrators

LECTURE #1

PDFs Download From @

1

MCQs SERIES

Like || Comment || Share || Subscribe

Answer: B

Solution:	Methods	Suitability	
	Hand compaction	Hand compaction is obtained for small quantities of concrete.	
		We use hand compaction when Vibrators are not available on site.	
		It results in inefficient compaction.	
		Hand compaction requires high water content.	
		It can be done by Tamping, Ramming and Rodding.	
		➢ Useful for layer thickness < 20 cm.	
		For thin slabs, pavement and floors.	
	Surface or screed vibrator	Used in rigid pavement.	
		\succ Compacted up to 150-250 mm layer thickness (200 mm in general).	
	External or form vibrator	Used in thin & heavily reinforced section (tunnel lining work)	
	Internal/Needle/Pin vibrator	Mass concreting work (bridge pier construction)	
	Mechanical vibrator	Closely spaced reinforced section (slump-50 mm)	
	Table vibrator	Cube casting in laboratory	
		For precast concrete member	

Like || Comment || Share || Subscribe

Q.25 Grouting of the Cracks is measured in _____.

R

1

- **A.** M3
- **B.** M2
- **C. M**
- **D.** Number

PORTONICATION

Like || Comment || Share || Subscribe

Answer: C

Solution:

□ Grouting method used in concrete repair to restore structural integrity, stop water leaks, or merely to seal the crack.

□ Measured in **running meter**.

R

1

Like || Comment || Share || Subscribe

Q.26 For a fine-grained soil, WL = 48% and WP = 27%, then the soil is classified as

- A. CL
- B. ML
- C. CH
- D. CI

EUCATION SUFOR

Answer: D

Solution:

PDFs Download From @

R

1

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.27 Plasticity index of a clayey soil is 20%. If plastic limit is 30%, then the compression index is

1

- A. 0.45
- **B.** 0.27
- **C.** 0.36
- **D.** 0.18

PDFs Download From @

R

THE POINT SUPPORT

Like || Comment || Share || Subscribe

SUBSCRIBE

Answer: C

Solution:

Compression Index, C_c = 0.009 (LL-10) [For undisturbed clays] = 0.007 (LL-10) [For remoulded clays]

 $I_P = LL - PL \text{ or, } LL = I_P + PL = 20 + 30 = 50\%$ $C_c = 0.009 (50 - 10) = 0.36$

Z

Like || Comment || Share || Subscribe

Q.28 Minimum nominal cover for designing RCC water tank is

R

1

- A. 55 mm
- B. 50 mm
- **C.** 45 mm
- **D.** 40 mm

Answer: C

Solution:

Nominal cover (min):

Effective cover = Nominal cover (Clear cover) + Diameter of ring + ½ Diameter of Main bar

E

- □ Slab: 15/20 mm
- **Beam: 25 mm**
- □ Column: 40/25 mm
- □ Footing: 50 mm
- **Pile cap: 60 mm**

PDFs_Download From @

- Derived Pile: 75 mm
- □ Water tank: 45 mm

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.29 The shape of the particle size curve is represented by

1

- A. Coefficient of curvature
- **B. Effective diameter**
- C. Effective size
- **D.** Uniformity coefficient

Like || Comment || Share || Subscribe

Answer: A

Solution:

□ Co-efficient of curvature (C_c) represents the shape of the particle size distribution curve.

□ Uniformity co-efficient (C_u) signifies the range of particle size distribution curve.

E

SUBSCRIBE

1

Like || Comment || Share || Subscribe

Q.30 The initial setting time of hydraulic lime is

R

- A. 30 minutes
- B. 60 minutes
- C. 120 minutes
- D. 90 minutes

RUNE ER/MO RUNE ER/MO EUCATIONI BOOT YOUT SUESS

Like || Comment || Share || Subscribe

Answer: C

Solution:

Hydraulic lime/water lime:

PDFs_Download From @

- Purity: 70 to 95%, Clay: 5 to 30%.
- Obtained from calcination of kankar.
- Off white colour less vigorous in nature than fat lime.
- Used where strength is required.
- Capable of setting in water and in damp locations.
- Initial setting time of hydraulic lime is 120 min (2 hours).
- Used in: Brick Masonry, Stone Masonry, under water construction etc.

-

Like || Comment || Share || Subscribe

Q.31 According to IS:303-1989, the thickness of plywood boards (in mm unit) in a 3ply board is

- A. 3, 5, 7, 9
- B. 3, 4, 5, 6
- C. 4, 5, 6, 7
- D. 2, 3, 4, 6

1

HIGHLERING OF

Like || Comment || Share || Subscribe

Answer: D

Solution:

Thickness of Plywood Boards: (As per IS: 303-1989)

R

Board	Thickness (mm)
3 ply	3, 4, 5, 6
5 ply	5, 6, 8, 9
7 ply	9, 12, 15, 16
9 ply	12, 15, 16, 19
11 ply	19, 22, 25
Above 11 ply	As ordered

Like || Comment || Share || Subscribe

Q.32 As per IS:269-2015, ratio of percentage of alumina to that of iron oxide is

- A. 0.2
- **B.** 0.33
- **C.** 0.5
- **D.** 0.66

PDFs Download From @

R

1

R

1

Answer: D

Solution:

As per IS: 269-2015

Chemical requirements	33/43 Grade	53 Grade
Lime Saturation Factor (LSF)	0.66-1.02	0.80-1.02
Alumina Modulus (AM)	0.66 (min)	0.66 (min)
Insoluble residue (% by mass)	5% (max)	5% (max)
Magnesia (% by mass)	6% (max)	6% (max)
Sulphuric anhydride (% by mass)	3.5% (max)	3.5% (max)
Total loss of ignition (%)	5% (max)	4% (max)
	0.10% (max) and 0.05% (max)	0.10% (max) and 0.05% (max)
Chloride (%)	for prestress structure	for prestress structure

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.33 If the soundness test of coarse aggregate soaked with magnesium sulphate, then loss in % should not be more than

- **A. 12%**
- **B. 18%**
- **C. 30%**
- **D. 45%**

PDFs Download From @

Z

LECTURE #1

PDFs Download From @

MCQs SERIES

Like || Comment || Share || Subscribe

Answer: B

Solution:

Property	Test	Limits
Cleanliness	Sieve Analysis	Max. 5 % passing on 75 µ sieve
Shape & size	FI & EI (combine)	40 % (max)
	Los Angles Abrasion Value	30 % (max) for wearing course
		50 % (max) for other than wearing
Strength		course
	Aggregate Impact Value	30 % (max) for wearing course
		45 % (max) for other than wearing
		course
	Crushing Value	Max. 30%
		12 % max. on Sodium Sulphate
Durability	Soundness	solution 18 % max. on Magnesium
		Sulphate solution
Water absorption	Water absorption	In general, 2 % max but for road
		aggregate max. 0.6 %
Adhesion to	Coating & Stripping value	Max.5 % [IRC]
Bitumen		
Water Sensitivity	Retained tensile strength	Min. 80%

SUBSCRIBE

1

1

R

Like || Comment || Share || Subscribe

Q.34 Maximum permissible color for domestic water supply based on cobalt scale

- A. 5 ppm
- B. 15 ppm
- C. 10 ppm
- D. 20 ppm

1

Like || Comment || Share || Subscribe

Answer: D

Solution:

Measurement:

 Measurement of color is done by color matching techniques using Nessler's Tubes (Instrument used - Tintometer).

The color of water is measured on Platinum cobalt scale.

7

Scale	AL	CFR
Hazen scale/ TCU	5	15
Cobalt scale	10	20

E

Like || Comment || Share || Subscribe

Q.35 A simply supported beam (I + 2a) with equal overhangs (a) carries a udl over the whole length, the BM changes sign if

- **A. I** > 2a
- **B.** I = 21
- **C.** I = 4a
- **D.** I < 2a

PDFs Download From @

R

UNERVICE DUCATION

Answer: A

Solution:

PDFs Download From @

50

Ξ

1

SUBSCRIBE Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.36 The minimum cement content (in kg/m3) for PCC required for severe exposure condition as per IS:456-2000

- A. 400
- **B.** 300
- **C.** 340
- **D.** 250

PDFs Download From @

1

R
1

1

Like || Comment || Share || Subscribe

Answer: D

Solution:

Type of Concrete	PCC			RCC		
Exposure Conditions	Min. grade of Concrete	Min. Cement Content (kg/m ³)	Max. W/C ratio	Min. grade of Concrete	Min. Cement Content (kg/m ³)	Max. W/C ratio
Mild	-	220	0.60	M20	300	0.55
Moderate	M15	240	0.60	M25	300	0.50
Severe	M20	250	0.50	M30	320	0.45
Very Sever	M20	260	0.45	M35	340	0.45
Extreme	M25	280	0.40	M40	360	0.40

Like || Comment || Share || Subscribe

Q.37 Water stored in a reservoir below the minimum pool level is called

- A. Valley storage
- B. Bank storage
- C. Surcharge storage
- D. Dead storage

SUBSCRIBE

1

Answer: D

Solution:

Download From @

Like || Comment || Share || Subscribe

- Dead Storage: The volume of water held below the minimum pool level is called the dead storage.
- □ Useful storage is the water stored in a reservoir above the minimum pool level and is available for use.
- Valley storage: Some amount of water stored by the stream channel even before a dam is constructed.
- Surcharge storage is the water stored in a reservoir above the maximum pool level. It is not available for use and is used to protect the dam from overtopping.

Like || Comment || Share || Subscribe

Q.38 Obstacle to ranging but not chaining is

1

- A. River
- B. Hill
- C. Building

PDFs Download From @

D. Pond

1

Like || Comment || Share || Subscribe

Answer: B

Solution:

PDFs Download From @

□ Chaining is the process of measuring the length of series of a straight lines with tape or chain and then locating the details on the ground relative to these lines.

SUBSCRIBE

Ranging is the process of locating a number of points on the long survey line.

-

- A river is an obstacle to chaining but not ranging.
- □ A hill is an obstacle to ranging but not chaining.
- □ A Building is obstacle of chaining as well as ranging.

Like || Comment || Share || Subscribe

Q.39 The process of turning the telescope about the vertical axis in horizontal plane is called a

- A. Reversing
- **B.** Transiting
- C. Plunging
- D. Swinging

PDFs Download From @

R

Like || Comment || Share || Subscribe

Answer: D

Solution:

PDFs Download From @

Swinging: The process of turning the telescope about the vertical axis in a horizontal plane is known as swinging.

E

Transiting: It is the rotation of the telescope about its horizontal axis in a vertical plane. It is also known as reversing or plunging.

R

Like || Comment || Share || Subscribe

Q.40 If the fore bearings of lines AB and BC are 190^o and 39^o respectively, the included angle ABC is

- **A.** 29⁰
- **B.** 151⁰
- **C.** 49⁰
- **D.** 229⁰

1

Answer: D

Solution:

PDFs Download From @

Included angle ABC = FB of BC – BB of AB FB of BC = 39° FB of AB = 190° BB of AB = 10° $< ABC = 39^{\circ} - 10^{\circ} = 29^{\circ}$

K

SUBSCRIBE

Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.41 A 1st class brick immersed in water for 24 hours, should not absorb water (by weight) more than

- **A. 10 %**
- **B.** 15 %
- **C.** 20 %
- D. 25 %

PDFs Download From @

K

EDUCATION SUPER

Like || Comment || Share || Subscribe

Answer: C

Solution:

Good Bricks Recognition:

PDFs_Download From @

- Uniform, rectangular shape/surface and sharp edges.
- Uniform deep red or cherry color.
- Free from stones, grits, organic matters etc.
- □ No impression is made when stretched by finger nail.
- □ When two bricks are stuck together a metallic sound should be produced.

=

Water absorption should not be more than 20% and crushing strength > 10 N/mm2.

Like || Comment || Share || Subscribe

Q.42 The moment of inertia of a triangular section (base b, height h) about centroidal axis parallel to the base, is

- A. bh³/3
- B. bh³/36
- C. b³h/12
- D. bh³/2

SUBSCRIBE

R

Answer: B

Solution:

Moment of Inertia:

PDFs Download From @

R

1

Q.43 The minimum diameter of longitudinal bars in a column is

R

- A. 12 mm
- **B.** 6 mm
- **C.** 8 mm
- D. 16 mm

TOUR SUCCESS

Like || Comment || Share || Subscribe

Answer: A

Solution:

<u>s</u> Download From @

- As per IS 456: 2000, clause 26.5.3.1,
- (i) The main longitudinal reinforcement bars used in column shall not be less than 12 mm in diameter.
- (ii) The minimum number of the longitudinal bar provided in column shall be four in rectangular columns and six in circular columns.
- (iii) The cross-sectional area of longitudinal reinforcement <mark>shall be not less than 0.8 per cent nor more than 6 per cent of the gross cross-sectional area of the column</mark>.
- (iv) A reinforced concrete column having helical reinforcement shall have at least six bar of longitudinal reinforcement within the helical reinforcement.

=

Like || Comment || Share || Subscribe

Q.44 The effective length of a weld, is taken as the actual length

- A. Minus twice the size of weld
- **B.** Plus the size of weld
- C. Minus the size of weld

PDFs Download From @

D. Plus twice the size of weld

7

1

E

Like || Comment || Share || Subscribe

Answer: A

Solution:

PDFs Download From @

- □ The effective length of a weld refers to the portion of the weld that contributes to the strength and stability of the joint.
- Effective length of weld = Actual length of weld 2 x size of weld > 4 S

E

Q.45 The shape factor of an isosceles triangle for bending about the axis parallel to the base is:

- A. 1.7B. 2.0
- **C.** 1.5
- D. 2.34

PDFs Download From @

1

R

Answer: D

Solution: Shape factor = $\frac{Plastic moment}{Yield moment}$

PDFs Download From @

R

Section	Shape factor		
Triangular	2.34		
Diamond	2		
Circle	1.7		
Rectangle/Square	1.5		
I-section	1.12-1.14		
H-section	1.5		
Circular hollow section	1.27		
Solid circular section	$\frac{16}{3\pi} = 1.67$		

Q.46 The number of independent equations to be satisfied for static equilibrium of a plane structure is

PDFs Download From @

1

K

Answer: A

Solution:

Equation of Static Equilibrium:

DFs_Download From @

- □ For a plane frame structure, number of static equilibrium equation is 3.
- 1. Algebraic sum of horizontal external forces, $\Sigma Fx = 0$
- 2. Algebraic sum of vertical external forces, $\Sigma Fy = 0$ and
- 3. Algebraic sum of all moments at any point, $\Sigma Mz = 0$
- □ For a space frame structure, number of static equilibrium equation is 6.

SUBSCRIBE

Like || Comment || Share || Subscribe

 $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$, $\Sigma Mx = 0$, $\Sigma My = 0$ and $\Sigma Mz = 0$

Like || Comment || Share || Subscribe

Q.47 If there are m unknown member forces, r unknown reaction components and j number of joints, then the degree of static indeterminacy of a pin-jointed plane frame is given by

- A. m r + 2j
- B. m + r 2j
- C. m r + 2j
- D. m + r + 2j

PDFs_Download From @

7

Answer: B

Solution:

Static Indeterminancy (D_s):

- ✓ For beam, $D_s = D_{se} + D_{si} = D_{se} = r 3$
- For truss, $D_s = D_{se} + D_{si} = (r 3) + (m 2j + 3) = m + r 2j$
- ✓ For frame, $D_s = D_{se} + D_{si} = (r 3) + (3C R_r)$

Where, m = No of available members

- J = No of joints
- C = No of close loop

PDFs Download From @

R_r = No of force release (For hybrid joint) = (No of connected members -1)

Ξ

SUBSCRIBE

Like || Comment || Share || Subscribe

Like || Comment || Share || Subscribe

Q.48 Degree of kinematic indeterminacy of a pin-jointed plane frame is given by

- A. 2j r
- B. j 2r
- C. 3j r
- D. 2j + r

PDFs Download From @

R

1

1

1

Answer: A

Solution:

Type of Joints	Type of plane	Structure	Degree of Kinematic Indeterminancy (D _k)
	2D (Plane)	Truss	2j - r
Pin Joint	3D (Space)	Truss	3j - r
		Beam	
Rigid Joint	2D (Plane)	Frame	3j - r
	3D (Space)	Frame	6j - r

Like || Comment || Share || Subscribe

Q.49 An aggrading river is a

A. Scouring River

PDFs Download From @

- **B. Silting River**
- C. Neither silting nor scouring river

K

D. Both silting and scouring river

Like || Comment || Share || Subscribe

Answer: B

Solution:

PDFs Download From @

□ Aggrading Rivers: These rivers collect sediments and build up their bed by silting.

Degrading Rivers: The rivers which displace sediment and carry on scouring are known as degrading rivers.

E

1

Like || Comment || Share || Subscribe

Q.50 When the reservoir is full, the maximum compressive force in a gravity dam is produced

- A. At the heel
- B. At the toe
- C. Within the middle third of base

1

D. At centre of base

PDFs Download From @

HINGINE RUNCE

Like || Comment || Share || Subscribe

Answer: B

Solution:

PDFs_Download From @

- □ For reservoir empty condition maximum compressive force will be at the heel.
- For reservoir full condition maximum compressive force will be at the toe of the dam.

Ξ

X

Like || Comment || Share || Subscribe

Q.51 Surveys which are carried out to depict mountains, rivers, water bodies, wooded areas and other cultural details, are known as

E

- A. Cadastral surveys
- B. City surveys
- C. Topographical surveys

1

D. Guide map surveys

Answer: C

Solution:

On the basis of purpose:

Fs_Download From @

- **Topographical Survey: Natural + Man made features (scale- 1:50000 toposheet).**
- Engineering Survey: To prepare detailed drawing of projects involving roadways & railways.
- **Cadastral Survey: To fix the boundary/Property line, calculate land area.**
- Geological Survey: Mineral, fault, fold.
- **Archaeological Survey: Ancient feature.**
- Geographical Survey: Different strata of earth crust.

1

Military Survey: Communication between road, railway, airport within the different part of country.

=

1

Q.52 For the design of a simply supported T-beam the ratio of the effective span to the overall depth of the beam is limited to

A. 25
B. 20
C. 10
D. 15

EUCATION SUPERIor

Like || Comment || Share || Subscribe

Answer: B

Solution:

Deflection Control:

PDFs Download From @

Deflection is controlled by Span/Depth ratio.

2

	Span/Depth ratio					
			Applied modification	Applied modification		
Type of beam	Span up to 10	Span > 10 m	factor up to 10 m span	factor > 10 m span		
	m					
Cantilever	7	7	7 X K _c X K _t	7 X K _c X K _t		
Simply	20	$20 \text{ X} \frac{10}{10}$	20 X K _c X K _t	20 X K X K X <u>10</u>		
supported		20 A Span		20 MR _c MR _t A Span		
Continuous	26	$26 \mathrm{X} \frac{10}{Span}$	26 X K _c X K _t	$26 \mathrm{X} \mathrm{K}_{\mathrm{c}} \mathrm{X} \mathrm{K}_{\mathrm{t}} \mathrm{X} \frac{10}{\mathrm{Span}}$		

Like || Comment || Share || Subscribe

Q.53 The maximum diameter of a bar used in a ribbed slab, is

R

- A. 20 mm
- B. 22 mm
- **C.** 12 mm
- D. 6 mm

Answer: B

Solution:

- Max. Diameter of bar: 22 mm
- **Topping thickness: 5 to 8 cm**
- Nominal cover (Min): 20 mm
- Thickness of rib (Min): 65 mm

PDFs Download From @

Overall depth shall not exceed 4 times the breadth of slab.

E

X

Q.54 The opening provided in sloping roof with its top parallel to the roof surface, is called

- A. Skylight window
- **B.** Lantern window
- C. Dormer window
- **D.** Louvered window

Like || Comment || Share || Subscribe
PROVIDE FINO

Answer: A

Solution:

🖪 Download From @

Like || Comment || Share || Subscribe

- **Casement windows: Shutters of which open like doors.**
- Gable windows: Windows which are provided in the gable ends of a roof.
- □ Bay windows: Windows project outside the external wall of a room.
- □ Lantern window: Fixed on flat roofs to provide light to the inner portion of the building.
- **Skylights window: Provided on the sloping surface of a pitched roof**.
- **Dormer windows: Vertical window built into the sloping side of a pitched roof.**
- Clerestorey window: Window usually provided near the main roof of a room and opens above the adjoining veranda.

Like || Comment || Share || Subscribe

Q.55 The stepped structure provided for lateral support of a structure, is

- A. Breast wall
- **B.** Buttress
- C. Retaining wall
- D. Parapet wall

SUBSCRIBE

Z

R

PRE PINC OF

Answer: B

Solution:

The stepped structure provided for lateral support of a structure, is called Buttress.

SUBSCRIBE

R

Like || Comment || Share || Subscribe

Q.56 The process of making the back ground rough, before plastering, is

- A. Peeling
- **B.** Blistering
- C. Dubbing
- D. Hacking

Answer: D

Solution:

Plastering Work:

- □ IS Code: 1661
- □ Measured in m².

Dewnload From @

- Generally, thickness of plaster is 12 mm.
- □ First coat/Rendering/Under coat: For straightening or leveling an uneven surface. Thickness- 10-15 mm

SUBSCRIBE

- Second coat/Floating coat: Thickness- 3-8 mm
- **3rd coat/Final coat/Finishing coat/setting coat: Provide smooth surface. Thickness-2-3 mm.**
- □ If plastering is done in single coat, its thickness range is 6-12 mm.
- **Bull mark** is used to ensure that thickness of plastering is uniform.
- **Pargetting** is a decorative or water proof plastering applied on the walls.
- □ The process of making the back ground rough before plastering is called hacking.

Like || Comment || Share || Subscribe

Q.57 While designing a stair, the product of rise and going is approximately kept equal to

- **A. 450**
- **B.** 500
- **C.** 350
- **D.** 420

PDFs Download From @

1

1

Answer: D

Solution:

Thumb Rule for dimension of steps:

- T + 2R = 550 to 600 mm
- R + T= 400 to 450 mm
- R x T = 40000 to 41000 mm²

SUBSCRIBE

Like || Comment || Share || Subscribe

1

R

Like || Comment || Share || Subscribe

Q.58 While compacting the concrete by a mechanical vibrator, the slump should not exceed

- A. 5.0 cm
- B. 7.5 cm
- C. 2.5 cm
- D. 10 cm

1

R

1

DUCATION I

Answer: A

Solution:

PDFs Download From @

Type of vibrator	Slump Value (mm)			
Power driven	< 25 mm			
Hand driven	25-50 mm			
Mechanical vibrator	50 mm			
Normal vibrator	100 mm			
EDUCATION!				

Like || Comment || Share || Subscribe

Q.59 For a cantilever of effective depth of 0.5 m, the maximum span to satisfy vertical deflection limit is

- A. 4 m
- B. 4.5 m
- **C.** 3.5 m
- D. 5 m

PDFs Download From @

2

Like || Comment || Share || Subscribe

SUBSCRIBE

Answer: C

Solution:

For cantilever, $\frac{Span}{Depth} = 7$ or, Span = 7 x 0.5 = 3.5 m.

K

R

Like || Comment || Share || Subscribe

Q.60 For the construction of cement concrete floor, the maximum permissible size of aggregate, is

- A. 8 mm
- B. 10 mm
- **C.** 4 mm
- D. 6 mm

1

Answer: B

Solution:

Maximum permissible size of aggregate:

1

DPC: 10 mm

Floor: 10 mm

PDFs Download From @

Mass concrete: 40 mm

Most of RCC work: 20 mm

Congested r/f area: 10 mm

SUBSCRIBE

Like || Comment || Share || Subscribe

Q.61 Separation of coarse aggregates from mortar during transportation, is known

- A. Segregation
- B. Shrinkage
- C. Bleeding
- D. Creeping

SUBSCRIBE

R

Like || Comment || Share || Subscribe

Answer: A

Solution:

PDFs Download From @

- Separation of coarse aggregate from mortar during transportation, is known as segregation.
- Bleeding is the tendency of the water to rise to the surface of the freshly laid concrete.

-

R

1

Like || Comment || Share || Subscribe

Q.62 The shuttering of a hall measuring 4 m \times 5 m, can be removed after

- A. 14 days
- B. 5 days
- C. 7 days
- **D.** 10 days

R

1

Answer: C

Solution:

Type of formwork	Minimum Period	Minimum Period for	
	for OPC	OPC + mineral	
		admixture	
Vertical member, Side of beam	16 – 24 hr	16 – 24 hr	
Soffit formwork to Slab (refix props)	3 days	7 days	
Soffit formwork to Beam (refix props)	7 days	10 days	
Prop to Slab			
Span up to 4.5 m	7 days	10 days	
Span over 4.5 m	14 days	14 days	
Prop to beams to arches			
Span up to 6 m	14 days	14 days	
Span over 6 m	21 days	21 days	

PDFs Download From @

SUBSCRIBE Like Comm

Like || Comment || Share || Subscribe

Q.63 The approximate value of the ratio between direct tensile strength and flexural strength is

- A. 0.33
- **B.** 0.5
- **C.** 0.75
- D. 1.0

PDFs Download From @

R

1

Answer: B

Solution:

PDFs Download From @

- Compressive Strength (f_{ck}) > Cylinder strength > Flexural strength (f_{cr}) > Split tensile strength (f_{cs}) > Direct tensile strength (f_{ct})
- Direct tensile strength = 1/2 Flexural strength of concrete.

Parameters	Compressive	Flexural	Split tensile	Direct tensile
	Strength (f _{ck})	strength (f _{cr})	strength (f _{cs})	strength (f _{ct)}
Test	Compression	2 point & 3	Split tensile test	Direct tension
	test	point test		test
Specimen	150 mm cube	150 mm X 150	150 mm	150 mm X 150
		mm X 700 mm	diameter & 300	mm X 700 mm
		beam	mm height	beam
			cylinder	
Machine	CTM, UTM	CTM, UTM	UTM	UTM
Result	f_{ck}	$0.7\sqrt{f_{ck}}$	0.67 X 0.7 $\sqrt{f_{ck}}$	0.5 X 0.7 $\sqrt{f_{ck}}$

Ξ

SUBSCRIBE

Like || Comment || Share || Subscribe

Q.64 An aggregate is said to be flaky if its least dimension is less than

- A. 4/5th of mean dimension
- **B.** 1/5th of mean dimension
- C. 2/5th of mean dimension
- D. 3/5th of mean dimension

Z

1

E

PDFs Download From @

Answer: D

Solution:

PDFs Download From @

- Flakiness Index of aggregate is the percentage by weight of aggregate particles whose least lateral dimension (thickness) is less than 3/5th or 0.6 of their mean dimensions.
- Elongation index test of an aggregate is the percentage by weight of particles whose greatest dimension (length) is greater than 9/5th or 1.8 times their mean dimensions.

E

SUBSCRIBE

Not applicable for less than 6.3 mm size of aggregate.

Like || Comment || Share || Subscribe

Q.65 Air valves are generally provided in pressure pipes of water supply

- A. Near service pipes
- **B.** At pipe junctions
- C. At summits
- D. At low points

PDFs Download From @

K

Like || Comment || Share || Subscribe

Answer: C

PDFs_Download From @

Solution:

- □ Sluice/ Gate/ Shut off values: Regulate flow of water in pipes, Divide main line summits of the pressures. (Summit points). Provide on street corners & pipe junction.
- Air value: Used every summit point (air release value)
- **Check value or reflux value or non- returning value: Water flows in one direction only, backward flow not possible**.
- Scour or blow off value or drain value: Used in dead end of the pipe line to remove sand, silt etc. Drain values are provided at lower point or every depression & dead end to drain out the waste water.
- **Pressure Relief value or cutoff value or safety valve: Helps in regulating the water hammer pressure**.

Ξ.

